Local city report

Paris

M. Pascal¹, D. Grange², S. Host², L. Pascal¹, M. Corso¹, G. Falq¹, A. Ung¹, C. Declercq¹, S. Medina¹

¹French Institute for Public Health Surveillance, Saint-Maurice, France
²Regional Observatory of Health, Paris, France
³National Center for Scientific Research, GREQAM and IDEP, Marseille, France

Summary 3
Acronyms 3
Introduction 5
Section 1. Standardised HIA in 25 Aphekom cities 5
 1.1. Description of the study area for Paris .. 6
 Climatology ... 6
 Population .. 6
 Commuting ... 7
 1.2. Sources of air pollution and exposure data .. 7
 Sources ... 7
 Exposure data .. 8
 1.3. Health data .. 10
 1.4. Health impact assessment .. 11
 1.4.1. Short-term impacts of PM10 .. 11
 1.4.2. Short-term impacts of ozone ... 12
 1.4.3. Long-term impacts of PM2.5 ... 14
 1.4.4. Economic valuation ... 16
 1.4.5. Interpretation of findings ... 16
Section 2. Health Impacts and Policy: Novel Approaches .. 17
Section 3. Health Impacts of Implemented Policies in Air Pollution 19
Section 4. Sharing Knowledge and Uncertainties with Stakeholders 22
Section 5. Overview of findings and local recommendations .. 22
Acknowledgements .. 23
Appendix 1 – Health impact assessment ... 24
Appendix 2 – Economic valuation .. 27
The Aphekom collaborative network ... 29
The Aphekom Scientific Committee .. 29
Other Aphekom contributors ... 30
Coordination .. 30
Funding and support ... 30
To learn more ... 30
Summary

The Psas program (www.invs.sante.fr/surveillance/psas9/), which monitors air pollution and health in France, has contributed to the health impact assessments (HIA) of urban air pollution carried out in 25 European cities by the Aphekom project (Improving Knowledge and Communication for Decision Making on Air Pollution and Health in Europe, www.aphekom.org). Institut de Veille Sanitaire (InVS) has coordinated both projects.

Because informing decision-making at the city level remains a core focus of both projects, we have broken the HIAs out for each participating city to highlight its local specificities.

We chose various scenarios for reducing exposure to particulate matter and ozone and we used different tools and exposure/response functions to estimate the short and long term health impacts of the different pollutants. Below appears the HIA findings for the city of Paris.

The specific health impact assessment for Paris found that a significant health gain would be achieved by lowering annual mean levels of PM. Compliance with the WHO-AQG for PM10 (20 µg/m3) would induce a significant benefit on mortality and hospital admissions (112 deaths and 476 hospital admissions avoided per year). The associated monetary gain would be of more than 11 millions €.

Lowering PM2.5 would have a greater impact. Compliance with the WHO-AQG of 10 µg/m3 would postpone 1 423 deaths, corresponding to a gain in life expectancy of 0.5 years per inhabitant. This gain in life expectancy would be valued more than 4 billions €.

In addition, the Aphekom project was able to show that living near streets and roads carrying heavy traffic may have serious health effects, particularly on the development of chronic diseases. And Aphekom investigated the effects of EU legislation to reduce the sulphur content of fuels (mainly diesel oil used by diesel vehicles, shipping and home heating) showing in 20 Aphekom cities not only a marked, sustained reduction in ambient SO$_2$ levels but also the resulting prevention of some 2,200 premature deaths valued at 192 millions €.

Together these findings show that policies aimed at reducing air pollution would be associated with a significant improvement in the health status and quality of life of European citizens.

Acronyms

Aphekom: Improving Knowledge and Communication for Decision Making on Air Pollution and Health in Europe

HIA: health impact assessment

O$_3$: ozone

PM10: particulate matter with an aerodynamic diameter <10 µm

PM2.5: particulate matter with an aerodynamic diameter <2.5 µm
Introduction

Much has been done in recent years in European cities to reduce air pollution and its harmful effects on health. Yet gaps remain in stakeholders’ knowledge and understanding of this continuing threat that hamper the planning and implementation of measures to protect public health more effectively.

Sixty Aphekom scientists have therefore worked for nearly 3 years in 25 cities across Europe to provide new information and tools that enable decision makers to set more effective European, national and local policies; health professionals to better advise vulnerable individuals; and all individuals to better protect their health.

Ultimately, through this work the Aphekom project hopes to contribute to reducing both air pollution and its impact on health and well being across European cities.

Section 1. Standardised HIA in 25 Aphekom cities

Health impact assessments have been used to analyse the impact of improving air quality on a given population’s health. Using standardised HIA methods, the preceding Apheis project (1) (www.apheis.org) showed that large health benefits could be obtained by reducing PM levels in 26 European cities totalling more than 40 million inhabitants (2;3). Apheis thus confirmed that, despite reductions in air pollution since the 1990s, the public health burden of air pollution remains of concern in Europe.

In 2002, the Apheis project found that in Paris, 850 deaths per year could be avoided by reducing PM2.5 annual mean levels to 15 µg/m³. Reducing PM10 annual mean levels to 20µg/m³ would avoid 100 deaths and 140 hospitalisations for cardiovascular causes per year. The Enhis project further found that each reduction by 10 µg/m³ of the daily maximum 8-hour moving average ozone concentrations would delay 63 deaths per year in the general population, 25 from cardiovascular diseases, and 13 from respiratory causes.

Building on the experience gained in the Apheis project, Aphekom conducted a standardised HIA of urban air pollution in the 25 Aphekom cities totalling nearly 39 million inhabitants: Athens, Barcelona, Bilbao, Bordeaux, Bucharest, Budapest, Dublin, Granada, Le Havre, Lille, Ljubljana, London, Lyon, Malaga, Marseille, Paris, Rome, Rouen, Seville, Stockholm, Strasbourg, Toulouse, Valencia and Vienna. In each participating centre, the project analysed the short-term impacts of ozone and PM10 on mortality and morbidity, as well as the long-term impacts of PM2.5 on mortality and life expectancy in populations 30 years of age.

This work shows that a decrease to 10 µg/m³ of long-term exposure to PM2.5 fine particles (WHO’s annual air-quality guideline) could add up to 22 months of life expectancy for persons at age 30, depending on the city and its average level of PM2.5.

Hence, exceeding the WHO air-quality guideline on PM2.5 leads to a burden on mortality of nearly 19 000 deaths per annum, more than 15 000 of which are caused by cardiovascular diseases.

Aphekom also determined that the monetary health benefits from complying with the WHO guideline would total some 31.5 billions € annually, including savings on health expenditures, absenteeism and intangible costs such as well being, life expectancy and quality of life.
Figure 1: Predicted average gain in life expectancy (months) for persons 30 years of age in 25 Aphekom cities for a decrease in average annual level of PM2.5 to 10 µg/m³ (WHO’s Air Quality Guideline)

1.1. Description of the study area for Paris

The Aphekom project has defined the study area so that data from local air-quality monitoring can provide a good estimate of the average exposure of the population, taking into account local land use, daily commuting and meteorology.

The study area includes Paris and the three surrounding departments (Haut-de-Seine, Seine-Saint-Denis and Val-de-Marne), also named “little crown”. It is a densely populated urban area, concentrating several transportation infrastructures: highways, roads, railway, and two international airports located at the outskirts of this area.

Climatology

The climate encountered in the study area is usually mild and wet. Summer mean temperature is around 20°C and winter mean temperature around 6°C.

Population

The study area includes 124 municipalities around Paris with 6 507 783 inhabitants (13% of whom are more than 65 years) spread out on 762 km² of land (density of 8 540 inhab./km²) (source: Insee 2006).
Commuting

A majority of displacements occurs within the study area with 71.5%. Only 7% of people living in the study area are commuting outside. 44% of displacements are made with private cars, 34% walking, and 19% using public transportation (source: Insee 2006).

Figure 2 – Map of the study area

1.2. Sources of air pollution and exposure data

Sources

The main source of nitrogen oxides within the study area is road traffic: according to the Airparif/Drire inventory of emissions for year 2005, together with other mobile sources, road traffic represents 58% of the emissions.

Concerning PM10, the distribution of the emissions among sources is more balanced: according to the same inventory, road traffic and other mobile sources represent about 29% of the emissions, whereas production processes and combustions (energy production and transformation, garbage incineration, etc.) represent about 31%, and residential and tertiary sector 28%.

Ozone is a secondary air pollutant. Its formation is the result of complex processes. It is hence not possible to attribute ozone to sources of air pollution.
Table 1 – Main sources of air pollution (% t/year) (Source Airparif, 2005 inventory)

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Transportation (road, planes, trains)</th>
<th>Residential/tertiary sector</th>
<th>Industry/waste management</th>
<th>Other sources (energy, farming...)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SO₂</td>
<td>3%</td>
<td>35%</td>
<td>9%</td>
<td>53%</td>
</tr>
<tr>
<td>NOₓ</td>
<td>58%</td>
<td>20%</td>
<td>11%</td>
<td>11%</td>
</tr>
<tr>
<td>Primary PM₁₀</td>
<td>29%</td>
<td>26%</td>
<td>28%</td>
<td>18%</td>
</tr>
<tr>
<td>Primary PM₂.₅</td>
<td>32%</td>
<td>38%</td>
<td>20%</td>
<td>10%</td>
</tr>
</tbody>
</table>

Exposure data

Data concerning air pollution levels were obtained from Airparif, the local air pollution monitoring network.

All the background stations within study area were used to build the exposure indicators for the period 2004-2006: Aubervilliers (O₃), Bobigny (PM10, PM2.5), Cachan (O₃), Garches (O₃), Gennevilliers (PM10, PM2.5, O₃), Issy-les-Moulineaux (PM10, PM2.5), La Défense (PM10), Neuilly-sur-Seine (O₃), Nogent-sur-Marne (PM10), Paris 13ème (O₃), Paris 18ème (PM10, O₃), Paris 1er (PM10, PM2.5, O₃), Paris 6ème (O₃), Paris 12ème (PM10), Vitry-sur-Seine (PM10, PM2.5, O₃). The sub-urban station of Tremblay-en-France was used for PM10 and ozone.

Ozone concentrations are measured by Ultraviolet photometric method. PM10 and PM2.5 concentrations are measured by quartz microbalance method (TEOM).

After consultation of the reference laboratory in France for methods of measuring PM10 and PM2.5, we used two correction factors for respectively short and long term HIA calculations:
- In winter (increased levels of PM): 1.37
- In summer (moderate levels of PM): 1

These factors were based on comparative locally measurements between gravimetric and TEOM methods.

Corrected PM10 and PM2.5 annual mean have been calculated as the arithmetic mean of the annual concentrations of the urban stations.

The daily maximum ozone 8-hours concentrations have been calculated as the arithmetic mean of the maximum 8-hour moving averages of the stations.

Corrected PM10 annual mean were below the limit value for 2005 (40µg/m³), but higher than WHO-value (20µg/m³). The daily maximum ozone 8-hour moving average has been higher than 100µg/m³ during 107 days between 2004 and 2006, and above 160µg/m³ during 9 days.

Daily 8-hour maximum ozone levels show a large variability between winter and summer, while daily corrected PM10 and PM2.5 levels show a smaller variability.

Table 2 – Daily mean levels, standard deviation and 5th and 95th percentiles for air pollutants (2004-2006)

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Mean (µg/m³)</th>
<th>Standard deviation (µg/m³)</th>
<th>5th percentile (µg/m³)</th>
<th>95th percentile (µg/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ozone (daily 8h max)</td>
<td>59</td>
<td>33</td>
<td>10</td>
<td>118</td>
</tr>
<tr>
<td>PM10* (daily average)</td>
<td>25</td>
<td>11</td>
<td>12</td>
<td>45</td>
</tr>
<tr>
<td>PM2.5* (daily average)</td>
<td>17</td>
<td>9</td>
<td>7</td>
<td>34</td>
</tr>
</tbody>
</table>

* after correction
Figure 3 – Ozone concentration in the study area

Figure 4 – PM10 concentration in the study area
1.3. Health data

The number of deaths in the general population (non-external mortality) was 37,869 (annual rate 582 per 100,000), among which 9,707 (annual rate 249 per 100,000) were due to cardiovascular causes.

Table 3 — Annual mean number and annual rate per 100,000 deaths and hospitalisations (2004-2006)

<table>
<thead>
<tr>
<th>Health outcome</th>
<th>ICD9</th>
<th>ICD10</th>
<th>Age</th>
<th>Annual mean number</th>
<th>Annual rate per 100 000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-external mortality*</td>
<td>< 800</td>
<td>A00-R99</td>
<td>All</td>
<td>37,869</td>
<td>582</td>
</tr>
<tr>
<td>Total (including external) mortality</td>
<td>000-999</td>
<td>A00-Y98</td>
<td>> 30</td>
<td>38,881</td>
<td>999</td>
</tr>
<tr>
<td>Cardiovascular mortality</td>
<td>390-429</td>
<td>I00-I52</td>
<td>> 30</td>
<td>9,707</td>
<td>249</td>
</tr>
<tr>
<td>Cardiac hospitalisations</td>
<td>390-429</td>
<td>I00-I52</td>
<td>All</td>
<td>53,035</td>
<td>815</td>
</tr>
<tr>
<td>Respiratory hospitalisations</td>
<td>460-519</td>
<td>J00-J99</td>
<td>15-64</td>
<td>19,438</td>
<td>299</td>
</tr>
<tr>
<td>Respiratory hospitalisations</td>
<td>460-519</td>
<td>J00-J99</td>
<td>>65</td>
<td>16,889</td>
<td>260</td>
</tr>
<tr>
<td>Respiratory hospitalisations</td>
<td>460-519</td>
<td>J00-J99</td>
<td>All</td>
<td>56,831</td>
<td>873</td>
</tr>
</tbody>
</table>

* Non-external mortality excludes violent deaths such as injuries, suicides, homicides, or accidents.
1.4. Health impact assessment

Aphekom chose different scenarios to evaluate the health impacts of short- and long-term exposure to air pollution. The scenarios are detailed below for each air pollutant.

NOTE: Under no circumstances should HIA findings for the different air pollutants be added together because the chosen air pollutants all represent the same urban air pollution mixture and because their estimated health impacts may overlap.

The HIA method is detailed in Annex 1 and HIA tools are provided in http://si.easp.es/aphekom.

Here we present a summary of our HIA method.

<table>
<thead>
<tr>
<th>Current (2004-06) air pollution levels, e.g. [PM$_{2.5}$]</th>
<th>Current (2004-06) health outcomes, e.g. mortality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air pollution change for two types of scenarios</td>
<td>Concentration-response function = % change in health outcome per unit change in pollutant levels</td>
</tr>
<tr>
<td>- decrease by a fixed amount, e.g. [PM$_{2.5}$] - 5 µg/m3</td>
<td></td>
</tr>
<tr>
<td>- decrease to the WHO air quality guidelines (WHO-AQG), e.g. [PM$_{2.5}$] = 10 µg/m3</td>
<td></td>
</tr>
<tr>
<td>Impact = change in health outcome associated with the change in pollutant levels</td>
<td></td>
</tr>
</tbody>
</table>

Figure 6 – Principles of local health impact assessment (HIA)

1.4.1. Short-term impacts of PM10

For PM10, we first considered a scenario where the annual mean of PM10 is decreased by 5 µg/m3, and then a scenario where the PM10 annual mean is decreased to 20 µg/m3, the WHO annual air quality guideline (WHO-AQG).

Decreasing PM10 annual mean by 5 µg/m3 or to 20 µg/m3 would give similar results, postponing 113 deaths per year, 321 hospitalisations for respiratory diseases and 158 hospitalisations for cardiac diseases.

Table 4 – Potential benefits of reducing annual PM10 levels on total non-external* mortality

<table>
<thead>
<tr>
<th>Scenarios</th>
<th>Total annual number of deaths postponed</th>
<th>Annual number of deaths postponed per 100 000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decrease by 5 µg/m3</td>
<td>113</td>
<td>2</td>
</tr>
<tr>
<td>Decrease to 20 µg/m3</td>
<td>112</td>
<td>2</td>
</tr>
</tbody>
</table>

* Non-external mortality excludes violent deaths such as injuries, suicides, homicides, or accidents.
Table 5 – Potential benefits of reducing annual PM10 levels on hospitalisations

<table>
<thead>
<tr>
<th>Scenarios</th>
<th>Respiratory hospitalisations</th>
<th>Cardiac hospitalisations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total annual number of cases postponed</td>
<td>Annual number of cases postponed per 100 000</td>
</tr>
<tr>
<td>Decrease by 5 £g/m³</td>
<td>321</td>
<td>5</td>
</tr>
<tr>
<td>Decrease to 20 £g/m³</td>
<td>319</td>
<td>5</td>
</tr>
</tbody>
</table>

Figure 7 – Potential benefits of reducing annual PM10 levels on mortality and on hospitalisations

1.4.2. Short-term impacts of ozone

For ozone, WHO set two guideline values for the daily maximum 8-hours mean. The interim target value (WHO-IT1) is set at 160 £g/m³. The purpose of the interim value is to define steps in the progressive reduction of air pollution in the most polluted areas. The second value, the air quality guideline value (WHO-AQG) is set at 100 £g/m³.

We first considered a scenario where all daily values above 160 £g/m³ were reduced to WHO-IT (160 £g/m³), then a scenario where all daily values above 100 £g/m³ were reduced to WHO-AQG (100 £g/m³), and lastly a scenario where the daily mean is decreased by 5 £g/m³.

Ozone values were below 160 £g/m³ except for nine days during the study period. Decreasing values above 100 £g/m³ to 100 £g/m³ would postpone 29 deaths, 5 hospitalisations for respiratory diseases for people aged 15 to 64, and 21 hospitalisations for respiratory diseases for people older than 65. Decreasing values by 5£g/m³ would postpone 59 deaths, 10 hospitalisations for respiratory diseases for people aged 15 to 64, and 42 hospitalisations for respiratory diseases for people older than 65.
Table 6 – Potential benefits of reducing daily ozone levels on total non-external* mortality

<table>
<thead>
<tr>
<th>Scenarios</th>
<th>Total annual number of deaths postponed</th>
<th>Annual number of deaths postponed per 100 000</th>
</tr>
</thead>
<tbody>
<tr>
<td>8h max daily values >160 µg/m³ = 160 µg/m³</td>
<td></td>
<td>0.02</td>
</tr>
<tr>
<td>8h max daily values >100 µg/m³ = 100 µg/m³</td>
<td>29</td>
<td>0.4</td>
</tr>
<tr>
<td>Decrease by 5 µg/m³</td>
<td>59</td>
<td>1</td>
</tr>
</tbody>
</table>

* Non-external mortality excludes violent deaths such as injuries, suicides, homicides, or accidents.

Table 7 – Potential benefits of reducing daily ozone levels on hospitalisations

<table>
<thead>
<tr>
<th>Scenarios</th>
<th>Respiratory hospitalisations (15-64)</th>
<th>Respiratory hospitalisations (>64)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total annual number of cases postponed</td>
<td>Annual number of cases postponed per 100 000</td>
</tr>
<tr>
<td>8h max daily values >160 µg/m³ = 160 µg/m³</td>
<td>0.2</td>
<td>0.0</td>
</tr>
<tr>
<td>8h max daily values >100 µg/m³ = 100 µg/m³</td>
<td>5</td>
<td>0.1</td>
</tr>
<tr>
<td>Decrease by 5 µg/m³</td>
<td>10</td>
<td>0.2</td>
</tr>
</tbody>
</table>

Short-term impacts of Ozone

![Short-term impacts of Ozone](image)

Figure 8 – Potential benefits of reducing daily ozone levels on mortality and on hospitalisations
1.4.3. Long-term impacts of PM2.5

For PM2.5, we first considered a scenario where the PM2.5 annual mean is decreased by 5 µg/m³, and then a scenario where the PM2.5 annual mean is decreased to 10 µg/m³ (WHO AQG).

Decreasing concentrations by 5 µg/m³ would postpone 1,116 deaths, and 535 deaths for cardiovascular causes. This corresponds to a gain in life expectancy of 0.4 years per inhabitant.

Decreasing concentrations to 10 µg/m³ would postpone 1,423 deaths, and 679 deaths for cardiovascular causes. This corresponds to a gain in life expectancy of 0.5 years per inhabitant.

Table 8 – Potential benefits of reducing annual PM2.5 levels on total mortality and on life expectancy

<table>
<thead>
<tr>
<th>Scenarios</th>
<th>Total annual number of deaths postponed</th>
<th>Annual number of deaths postponed per 100,000</th>
<th>Gain in life expectancy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decrease by 5 µg/m³</td>
<td>1,116</td>
<td>29</td>
<td>0.4</td>
</tr>
<tr>
<td>Decrease to 10 µg/m³</td>
<td>1,423</td>
<td>37</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Table 9 – Potential benefits of reducing annual PM2.5 levels on total cardiovascular mortality

<table>
<thead>
<tr>
<th>Scenarios</th>
<th>Total annual number of deaths postponed</th>
<th>Annual number of deaths postponed per 100,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decrease by 5 µg/m³</td>
<td>535</td>
<td>14</td>
</tr>
<tr>
<td>Decrease to 10 µg/m³</td>
<td>679</td>
<td>17</td>
</tr>
</tbody>
</table>
Long-term impacts of PM2.5

Figure 9 – Potential benefits of reducing annual PM2.5 levels on mortality

Figure 10 – Potential benefits of reducing annual PM2.5 levels on life expectancy
1.4.4. Economic valuation

These HIAs provide short- and long-term potential benefits on mortality of reducing air pollution as well as the short-term potential benefits on hospitalisations.

Mortality

The monetary values chosen to assess mortality benefits are going to differ depending on the short- or long-term nature of the exposure to air pollution. Indeed, the short- and long-term postponed deaths differ regarding the size of the gains in life expectancy (see Appendix 2).

For short-term impacts, a monetary value of €86,600 was chosen. Decreasing PM10 concentrations by 5 µg/m3 or to 20 µg/m3 would then correspond to a saving of 9,699,200€. Decreasing ozone concentrations above 100 µg/m3 to 100 µg/m3 would save 2,511,400 €. Decreasing ozone concentrations by 5 µg/m3 would save 5,109,000€.

For long-term impacts, the monetary value of €1,655,000 was chosen. Decreasing PM2.5 concentrations by 5 µg/m3 would then correspond to a saving 1,846,980,000 €. Decreasing PM2.5 concentrations to 10 µg/m3 would correspond to a saving of 2,355,065,000€

Taking into account the gain in life expectancy would correspond to a saving 3,858,674,304€ for the first scenario, and 4,823,498,760€ for the second.

Hospitalisations

The standard cost of illness approach is used for short-term hospitalisations, and consists in applying unit economic values to each case, including direct and indirect costs. The method is detailed on Appendix 2. Considering that a hospitalisation costs 3,777€, the savings would be of 1,809,183€ when reducing PM10 concentrations by 5 µg/m3. The gain associated to a reduction of ozone levels exceeding 100 µg/m3 would be of 98,202€. Reducing ozone levels by 5 µg/m3 would save 196,404€.

1.4.5. Interpretation of findings

The specific health impact assessment for Paris found that a significant health gain would be achieved by lowering annual mean levels of PM. Compliance with the WHO-AQG for PM10 (20 µg/m3) would induce a significant benefit on mortality and hospital admissions (112 deaths and 476 hospital admissions avoided per year). The associated monetary gain would be of more than 11 millions €.

Lowering PM2.5 would have a greater impact. Compliance with the WHO-AQG of 10 µg/m3 would postpone 1,423 deaths, corresponding to a gain in life expectancy of 0.5 years per inhabitant. This gain in life expectancy would be valued more than 4 billions €.
Section 2. Health Impacts and Policy: Novel Approaches

Pollutants such as ultrafine particles occur in high concentrations along streets and roads carrying heavy traffic. And evidence is growing that living near such streets and roads may have serious health effects, particularly on the development of chronic diseases. Until now, however, HIAs have not explicitly incorporated this factor.

For this purpose, Aphekom has applied innovative HIA methods to take into account the additional long-term impact on the development of chronic diseases from living near busy roads. We also evaluated the monetary costs associated with this impact.

We first determined that, on average, over 50 percent of the population in the 10 European cities studied lives within 150 metres of roads travelled by 10,000 or more vehicles per day and could thus be exposed to substantial levels of toxic pollutants.

<table>
<thead>
<tr>
<th>City</th>
<th>Population (Million. Hab)</th>
<th>PM10 annual average (ug/m³)</th>
<th>% population within 75m (average 29%)</th>
<th>% population within 150m (average 52%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Granada</td>
<td>0.24</td>
<td>34</td>
<td>14%</td>
<td>28%</td>
</tr>
<tr>
<td>Ljubljana</td>
<td>0.27</td>
<td>32</td>
<td>23%</td>
<td>47%</td>
</tr>
<tr>
<td>Bilbao</td>
<td>0.31</td>
<td>27</td>
<td>29%</td>
<td>59%</td>
</tr>
<tr>
<td>Sevilla</td>
<td>0.7</td>
<td>41</td>
<td>20%</td>
<td>38%</td>
</tr>
<tr>
<td>Valencia</td>
<td>0.74</td>
<td>46</td>
<td>44%</td>
<td>71%</td>
</tr>
<tr>
<td>Brussels</td>
<td>1.03</td>
<td>29</td>
<td>37%</td>
<td>64%</td>
</tr>
<tr>
<td>Stockholm</td>
<td>1.3</td>
<td>17</td>
<td>14%</td>
<td>30%</td>
</tr>
<tr>
<td>Barcelona</td>
<td>1.53</td>
<td>33</td>
<td>56%</td>
<td>77%</td>
</tr>
<tr>
<td>Vienna</td>
<td>1.66</td>
<td>25</td>
<td>36%</td>
<td>62%</td>
</tr>
<tr>
<td>Rome</td>
<td>2.81</td>
<td>37</td>
<td>22%</td>
<td>43%</td>
</tr>
</tbody>
</table>

Figure 11 – Estimated percentage of people leaving near busy roads

In the cities studied, our HIA showed that living near these roads could be responsible for some 15-30 percent of all new cases of: asthma in children; and of COPD (chronic obstructive pulmonary disease) and CHD (coronary heart disease) in adults 65 years of age and older.
Aphekom further estimated that, on average for all 10 cities studied, 15-30 percent of exacerbations of asthma in children, acute worsening of COPD and acute CHD problems in adults are attributable to air pollution. This burden is substantially larger than previous estimates of exacerbations of chronic diseases, since it has been ignored so far that air pollution may cause the underlying chronic disease as well.
In addition, for the population studied Aphekom estimated an economic burden of more than €300 million every year attributable to chronic diseases caused by living near heavy traffic. This burden is to be added to some €10 million attributable to exacerbations of these diseases.

The economic valuation is not sufficiently robust at the city level from a HIA as well as an economic perspective to allow for local computations.

Section 3. Health Impacts of Implemented Policies in Air Pollution

As part of the work of the Aphekom project an extensive review of the scientific literature on interventions, both legislative and coincidental which have resulted in reductions in air pollution, was conducted. This review shows that air pollution interventions have been successful at reducing air pollution levels. It has also shown that there is consistent (significant) published evidence that most of these interventions have been associated with health benefits, mostly by way of reduced cardiovascular or respiratory mortality and or morbidity. Throughout the majority of reviewed interventions the found decrease in mortality exceeded by far the expected predicted figures based on observations European multicity studies. This provides an informed scientific basis for decision and policy makers.

In addition to that, Aphekom investigated the effects of EU legislation to reduce the sulphur content of fuels (mainly diesel oil used by diesel vehicles, shipping and home heating). In detail the effect on air pollution levels of the implementation of the Council Directive 93/12/EEC and its amended version Council Directive 1999/32/EC including marine oils were analysed. The implementation of the two Council Directives encompassed three stages of implementation gradually reducing the sulphur content in certain fuels in the EU member states with stage (I) being implemented as laid down in the directive on 1st Oct. 1994, stage (II) on 1st Oct. 1996 and stage (III) on 1st July 2000.

Overall, for 20 European cities involved in the Aphekom project this analysis showed not only a marked, sustained reduction in ambient SO$_2$ levels, but also saved 2212 lives from all-cause mortality, 153 lives from respiratory-cause and 1312 lives from cardiovascular-cause mortality per year attributable to reduced ambient SO$_2$ in the cities studied, spread all across Europe, from the year 2000 onwards compared to the baseline period with no directive being implemented.

Air quality analysis

The general decreasing trend in daily urban background (UB) SO$_2$ concentrations that has been observed across all centres (except the French centres excluding Paris) over the time period of the study is illustrated in Figure 14. Overall there was no clear step change in SO$_2$ concentrations after implementation of the Directives; rather a gradual decline in SO$_2$ levels was observed.

Furthermore city specific observations for Paris are presented in Figure 15 showing seasonal averages of UB SO$_2$ (please note change in scaling compared to Fig. 14).
Figure 14: Plot of yearly urban background SO$_2$ averages of all Aphekom centres from 1990 – 2004

Figure 15: Plot of seasonal urban background SO$_2$ averages for Paris from 1991 to 2005
A rather abnormal peak of very high urban background SO$_2$ levels was observed simultaneously in a number of centres in the winters of 1995/6 and 1996/7. This does not mean that there are no outlying peaks now and then during the studied period in SO$_2$ levels for individual centres. The fact that those peaks were observed in many centres simultaneously and that individual levels were quite high compared to years before and after the observed peaks caught the attention of the WP6 team. Paris observed peaks in winter 1991 and 92, and then in 1995-1996 and 1997.

Based on the feedback received from the individual centres the most likely reason for the observed peaks happening simultaneously in a number of cities was cold wave in the winter months with peaking SO$_2$ levels. This coincided with observation made for a number of cities analysing daily averaged temperature data that showed prolonged periods with peaks in minimum temperatures reached in this time period. These observed cold waves went with increased fuel usage due to the increased space heating and electricity usage and as well as inversion. Another possible factor contributing to the observed SO$_2$ peaks could be that countries used up old stockpiles of fuel that did not comply with the directives. That might have happened independently from the cold wave or due to the fuel shortage during the prolonged cold weather.

Time-series analysis

It has to be noted that not all countries with collaborating cities have complied with the implementation dates laid down in the Council Directives due to various reasons, e.g. local derogations sought etc., and thus the implementation dates and the number of stages implemented are not all the same. Therefore the 14 centres including Athens, Bordeaux, Brussels, Dublin, Le Havre, Lille, London, Lyon, Marseille, Paris, Rome, Rouen, Stockholm and Strasbourg that implemented all three stages of the Council Directives were analysed separately.

The health data analysis showed no evidence of change of slope in the dose-response curve after implementation of the legislations and hence observed effects were related to level changes.

For these 14 cities, the implementation of:
- the first stage in 1994 reduced annual deaths by 639 deaths from all causes, by 47 deaths from respiratory and by 361 deaths from cardiovascular causes compared to the baseline period prior to October 1994 with no directive being implemented.
- the 2rd stage in 1996 reduced annual deaths by 1093 deaths from all causes, by 83 deaths from respiratory and by 610 deaths from cardiovascular causes compared to the baseline period with no directive being implemented.
- the 3rd stage in 2000 reduced annual deaths by 1616 deaths from all causes, by 127 deaths from respiratory and by 889 deaths from cardiovascular causes compared to the baseline period with no directive being implemented.

On a city specific level for Paris, the implementation of:
- the first stage in 1994 reduced annual deaths by 122 deaths from all causes, by 8 deaths from respiratory and by 53 deaths from cardiovascular causes compared to the baseline period prior to October 1994 with no directive being implemented.
- the 2nd stage in 1996 reduced annual deaths by 199 deaths from all causes, by 13 deaths from respiratory and by 86 deaths from cardiovascular causes compared to the baseline period with no directive being implemented.
- the 3rd stage in 2000 reduced annual deaths by 314 deaths from all causes, by 519 deaths from respiratory and by 135 deaths from cardiovascular causes compared to the baseline period with no directive being implemented.

As a result on a city specific level for Paris (summarized in Table 10) and overall for the 14 cities that implemented all 3 stages of the fuel legislation it was found that the efficiency/effectiveness/impact of the legislation based on lives saved, if we didn't apply any regulation, increased throughout the different stages of implementation overtime with more lives being saved after implementation of the 2nd stage of implementation compared to the first stage and with more lives being saved after implementation of the 3rd stage of implementation compared to the 2nd one.

Aphekom - Improving Knowledge and Communication for Decision Making on Air Pollution and Health in Europe
Table 10: Summary of lives saved per implementation stage (1-3)/intervention (and 95% Confidence Intervals) per year in Paris for different mortality groups compared the baseline period (<01.10.1994) with no legislation implemented

<table>
<thead>
<tr>
<th>Time period</th>
<th>All cause mortality cases per year & 95% CI</th>
<th>Respiratory mortality cases per year & 95% CI</th>
<th>Cardiovascular Mortality cases per year & 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>[≥ 01.10.1994 and <01.10.1996]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[≥ 01.07.1996 and <01.07.2000]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[≥ 01.07.2000]</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Section 4. Sharing Knowledge and Uncertainties with Stakeholders

To help decision makers draft policies on air quality and related environmental-health issues, Aphekom has developed a process, based on a deliberation-support tool, that helps frame and structure exchanges between stakeholders involved in developing policy options. Using this process enables them to propose and discuss multiple criteria for evaluating, prioritising and aligning their various needs, and for choosing actions that match their objectives and preferences.

This type of multi-criteria assessment enables highlighting divergences of opinion, focusing discussions on critical points and bridging differences among stakeholders from differing backgrounds. As a result, this process facilitates both communication and decision making.

To test use of the process and tool, Aphekom conducted two case studies in Brussels and in Paris during the development of local air-quality action plans. The case studies demonstrated the ability of the method and tools to structure discussions and highlight differing views, as confirmed by participants’ satisfaction with their use.

We also developed an online tool to familiarize users with the deliberation-support process used in the case studies and to enable them to create their own deliberative forums http://aphekom.kertechno.net/.

Section 5. Overview of findings and local recommendations

The specific health impact assessment for Paris found that a significant health gain would be achieved by lowering annual mean levels of PM. Compliance with the WHO-AQG for PM10 (20 µg/m³) would induce a significant benefit on mortality and hospital admissions (112 deaths and 476 hospital admissions avoided per year). The associated monetary gain would be of more than 11 millions €.

Lowering PM2.5 would have a greater impact. Compliance with the WHO-AQG of 10 µg/m³ would postpone 1,423 deaths, corresponding to a gain in life expectancy of 0.5 years per inhabitants. This gain in life expectancy would be valued more than 4 billions €.

In addition, the Aphekom project was able to show that living near streets and roads carrying heavy traffic may have serious health effects, particularly on the development of chronic diseases. And Aphekom investigated the effects of EU legislation to reduce the sulphur content of fuels (mainly diesel oil used by diesel vehicles, shipping and home heating) showing in 20 cities not only a marked,
sustained reduction in ambient SO\textsubscript{2} levels but also the resulting prevention of some 2,200 premature deaths valued at 192 millions €.

Together these findings show that policies aimed at reducing air pollution would be associated with a significant improvement in the health status and quality of life of European citizens.

This work will comfort local policies which are under implementation such as the Regional Plan for Air Quality (PRQA) adopted in 2009, the Atmosphere Protection Plan (PPA) under revision and the future Energy, Air and Climate Regional Scheme (SRCAE). Such findings will also support the experimentation of a Priority Action Area for Air Quality zone (ZAPA) that would be implemented in 2012 as a three-year test in the Paris Greater area.

Acknowledgements

The authors would like to thank Airparif which provided the air quality data.
Appendix 1 – Health impact assessment

For each specific relationship between health outcomes and pollutants, the health impact function was

$$\Delta y = y_0 (1 - e^{-\beta \Delta x})$$

Where Δy is the outcome of the HIA
y_0 is the baseline health data
Δx is the decrease of the concentration defined by the scenario
β is the coefficient of the concentration response function ($\beta = \log(\text{RR per 10 } \mu g/\text{m}^3)/10$)

The impact of a decrease of the pollutant concentration on the life expectancy was computed using standard abridged (5-year age groups) life table methodology, using the mortality data for each age group. We applied a reduction factor to the mortality rate, noted D_x, according to

$$D_x^{impacted} = D_x \times e^{-\beta \Delta x}$$

Δx is the decrease of the concentration defined by the scenario
β is the coefficient of the concentration response function.

Concentration response functions (CRFs) were selected from the literature, favouring multi-cities studies located in Europe (Table 1).

<table>
<thead>
<tr>
<th>HIA</th>
<th>Health outcome</th>
<th>Ages</th>
<th>RR per 10 $\mu g/\text{m}^3$</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short-term impacts of PM10</td>
<td>Non-external mortality</td>
<td>All</td>
<td>1.006</td>
<td>[1.004-1.008]</td>
</tr>
<tr>
<td></td>
<td>Respiratory hospitalisations</td>
<td>All</td>
<td>1.0114</td>
<td>[1.0062-1.0167]</td>
</tr>
<tr>
<td></td>
<td>Cardiac hospitalisations</td>
<td>All</td>
<td>1.006</td>
<td>[1.003-1.009]</td>
</tr>
<tr>
<td>Short-term impacts of O_3</td>
<td>Non-external mortality</td>
<td>All</td>
<td>1.0031</td>
<td>[1.0017-1.0052]</td>
</tr>
<tr>
<td></td>
<td>Respiratory hospitalisations</td>
<td>15-64</td>
<td>1.001</td>
<td>[0.991-1.012]</td>
</tr>
<tr>
<td></td>
<td>Respiratory hospitalisations</td>
<td>>=65</td>
<td>1.005</td>
<td>[0.998-1.012]</td>
</tr>
<tr>
<td>Long-term impacts of PM2.5</td>
<td>Total mortality</td>
<td>>30</td>
<td>1.06</td>
<td>[1.02-1.11]</td>
</tr>
<tr>
<td></td>
<td>Cardiovascular mortality</td>
<td>>30</td>
<td>1.12</td>
<td>[1.08-1.15]</td>
</tr>
</tbody>
</table>
PM10

For PM10, we first considered a scenario where the annual mean of PM10 is decreased by 5 µg/m³, and then a scenario where the same PM10 annual mean is decreased to 20 µg/m³, the WHO air quality guideline (WHO-AQG). The exposure indicator of PM10 was the annual mean, calculated as the arithmetic mean of the daily concentrations of the selected stations. The corresponding Δx for the two scenarios are:

- Scenario 1, Δx = 5 µg/m³
- Scenario 2, Δx = ([PM10]_mean – 20 µg/m³).
 Δx = 0 if [PM10]_mean < 20

Ozone

For ozone, WHO set two values for the daily maximum 8-hours mean. The interim target value (WHO-IT1) is set at 160 µg/m³. The purpose of the interim value is to define steps in the progressive reduction of air pollution in the most polluted areas. The air quality guideline value (WHO-AQG) is set at 100 µg/m³.

We first considered a scenario where all daily values above 160 µg/m³ were reduced to WHO-IT (160 µg/m³), then a scenario where all daily values above 100 µg/m³ were reduced to WHO-AQG (100 µg/m³), and lastly a scenario where the daily mean is decreased by 5 µg/m³.

The exposure indicator of ozone was the cumulated sum over defined thresholds, calculated using 8hours-daily values.

The corresponding Δx for the two scenarios are:

- Scenario 1, if [O3]_i ≥ 160 µg/m³, O_i = ([O3]_i - 160)
 if [O3]_i < 160 µg/m³, O_i = 0
- Scenario 2, if [O3]_i ≥ 100 µg/m³, O_i = ([O3]_i - 100)
 if [O3]_i < 100 µg/m³, O_i = 0
- Scenario 3, where the ozone yearly mean is decreased by 5 µg/m³, Δx = 5 µg/m³

PM2.5

For PM2.5, we first considered a scenario where the PM2.5 annual mean is decreased by 5 µg/m³, and then a scenario where the PM2.5 annual mean is decreased to 10 µg/m³ (WHO annual AQG). The exposure indicator of PM2.5 was the yearly mean, calculated as the arithmetic mean of the daily concentrations of the selected stations. The corresponding Δx for the two scenarios are:

- Scenario 1, Δx = 5 µg/m³
- Scenario 2, Δx = ([PM2.5]_mean – 10 µg/m³)
 Δx = 0 if [PM2.5]_mean < 10

Aphekom - Improving Knowledge and Communication for Decision Making on Air Pollution and Health in Europe
References

Appendix 2 – Economic valuation

Because the air pollution measures as well as epidemiologic data cover the 2004-2006 period for most of the cities, all costs are consequently expressed in euros 2005. Similarly, the average lengths of stay in hospital required for the benefits computations are for 2005.

Valuation of mortality benefits

Regarding mortality, we follow the standard valuation procedure adopted in Cafe (2005), NexExt (2003), ExternE (2000), which consists in using a Value of a Statistical Life (VSL) and a Value of a Life Year (VOLY) derived from stated preferences surveys, hence relying on preference-derived values rather than market-derived values. Indeed, the approach most widely used to value mortality elicits a hypothetical willingness to pay to benefit from a small decrease in mortality risk. Based on this trade-off, it then computes a VSL (used for long-term mortality effects) and/or a VOLY (used for short- and long-term mortality effects). We chose to rely on values obtained in recent European studies (see final Aphekom report for more details).

The choice of the monetary value to assess mortality benefits associated to a decrease in air pollution level depends on the type of impact.

- **For short-term mortality calculations**, the annual number of deaths postponed per year is used. Because the gains in life expectancy corresponding to each of these postponed deaths can be considered in the range of a few months, certainly lower than one year (Cafe 2005, Vol 2, p. 46), a VOLY of €86,600 is applied to each deaths postponed to compute annual benefits.

- **For long-term mortality calculations**, the magnitude of the gain in life expectancy related to the deaths postponed is considered as higher than a year (see Ezzati et al., 2002; Hurley et al. 2005; Watkiss et al. 2005; or Janke et al., 2009). A VSL of €1,655,000 is applied to each deaths postponed to compute annual benefits.

- **For long-term life expectancy calculations**, an average gain in life expectancy for persons 30 years of age is also computed using life tables and following a cohort until complete extinction. The annual corresponding benefits are obtained by multiplying the average gain in life expectancy by the number of 30-year-old individuals in the city, and by the VOLY. This corresponds to the benefits (in terms of life expectancy) 30 year-old people would gain over their lifetime if exposed to the $10 \mu g/m^3$ average annual level of PM2.5 (WHO’s Air Quality Guideline) instead of the current existing air pollution level in the city.

Valuation of hospitalisations benefits

The standard cost of illness approach is used for acute hospitalisations, and consists in applying unit economic values approach to each case, including direct medical and indirect costs.

The direct medical costs related to cardiac and respiratory hospitalisations are computed as the cost per inpatient day times the average length of stay in hospital. These cost data are taken from CEC (2008) for all twelve countries where the cities analysed in Aphekom are located (see Table 1). The average lengths of stay in days are obtained from the OECD Health Database (2010) for all countries except Romania (which is imputed from the population weighted average lengths of the 11 other countries).

The indirect costs are computed as the average gross loss of production per day times twice the average length of stay in hospital. Since we cannot control whether these days were actual working days, we then compute the daily loss of production as the average gross earnings in industry and services (full employment) obtained from Eurostat (2003) for each country, expressed in 2005 and divided by 365 days.
The total medical costs for cardiac and respiratory hospitalisations are obtained by adding together the direct and indirect components.

Table 11: Average lengths of stay, daily hospitalisation costs and work loss, and total hospitalisations cost per patient.

<table>
<thead>
<tr>
<th>Country</th>
<th>Circulatory system</th>
<th>Respiratory system</th>
<th>Hosp. causes (^{(b)})</th>
<th>Work loss (^{(c)})</th>
<th>Total costs related to hospitalisation (^{(d)})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Average length of stay in days (^{(a)})</td>
<td>Average cost per day (€ 2005)</td>
<td></td>
<td></td>
<td>Circulatory system</td>
</tr>
<tr>
<td>Austria</td>
<td>8.2</td>
<td>6.6</td>
<td>319</td>
<td>83</td>
<td>3,977</td>
</tr>
<tr>
<td>Belgium</td>
<td>9.2</td>
<td>8.8</td>
<td>351</td>
<td>98</td>
<td>5,032</td>
</tr>
<tr>
<td>France</td>
<td>7.1</td>
<td>7.1</td>
<td>366</td>
<td>83</td>
<td>3,777</td>
</tr>
<tr>
<td>Greece</td>
<td>7.0</td>
<td>5.0</td>
<td>389</td>
<td>48</td>
<td>3,395</td>
</tr>
<tr>
<td>Hungary</td>
<td>7.4</td>
<td>6.5</td>
<td>59</td>
<td>18</td>
<td>703</td>
</tr>
<tr>
<td>Ireland</td>
<td>10.5</td>
<td>6.9</td>
<td>349</td>
<td>81</td>
<td>5,366</td>
</tr>
<tr>
<td>Italy</td>
<td>7.7</td>
<td>8.0</td>
<td>379</td>
<td>62</td>
<td>3,873</td>
</tr>
<tr>
<td>Romania</td>
<td>8.5(^{(d)})</td>
<td>7.4(^{(d)})</td>
<td>57</td>
<td>6</td>
<td>587</td>
</tr>
<tr>
<td>Slovenia</td>
<td>8.6</td>
<td>7.3</td>
<td>240</td>
<td>34</td>
<td>2,649</td>
</tr>
<tr>
<td>Spain</td>
<td>8.5</td>
<td>7.4</td>
<td>321</td>
<td>55</td>
<td>3,664</td>
</tr>
<tr>
<td>Sweden</td>
<td>6.5</td>
<td>5.2</td>
<td>427</td>
<td>92</td>
<td>3,666</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>11.4</td>
<td>8.0</td>
<td>581</td>
<td>116</td>
<td>9,268</td>
</tr>
<tr>
<td>Mean(^{(d)})</td>
<td>8.5</td>
<td>7.4</td>
<td>373</td>
<td>73</td>
<td>4,411</td>
</tr>
</tbody>
</table>

Sources:
- \(^{(a)}\) OECD Health Data (2010);
- \(^{(b)}\) CEC (2008), annex 7, cost/bed/day corr;
- \(^{(c)}\) Eurostat (2003);
- \(^{(d)}\) population-weighted average, 2005 population data from OECD Health Data (2010).

For instance, based on Table 1, the average direct cost of a cardiac hospital admission is:

\[
8.5 \text{ days} \times \€373 = \€3,171
\]

and the corresponding indirect cost related to work loss is:

\[
2 \times 8.5 \text{ days} \times \€73 = \€1,241
\]

Overall, the unit economic value related to a cardiac hospital admission is €4,412.

For city-specific valuation, the last two columns of Table 1 provide average hospitalisation costs computed following the same rationale but using country-specific average lengths of stay, cost per day of hospitalisation and daily work loss.

Valuation of the benefits of EU legislation to reduce the sulphur content of fuels

The legislation has two potential effects on mortality: short-term and long-term. It has been decided that, to take a conservative standpoint, mortality effects will be considered as short-term effects. Consequently, a VOLY of €86,600 is applied to each premature deaths to compute the benefits of the legislation. The economic evaluation thus constitutes a lower bound of the mortality benefits of the legislation.
The Aphekom collaborative network

The authors would like to thank the Aphekom collaborative network for its invaluable contribution to the project, in particular:

- FRENCH INSTITUTE FOR PUBLIC HEALTH SURVEILLANCE, InVS, Saint-Maurice, France – Sylvia Medina, Kanwal Eshai, Christophe Declercq, Agnès Lefranc, Myriam Blanchard, Sophie Larrieu, Tek-Ang Lim, Alain Le Tertre, Laurence Pascal, Mathilde Pascal, Magali Corso, Aymeric Ung.
- UMEÅ UNIVERSITY, Umeå, Sweden – Bertil Forsberg, Lars Modig, Kadri Meister, Hans Orru
- MEDICAL UNIVERSITY OF VIENNA, Austria – Hanns Moshammer, Manfred Neuberger, Daniela Haluza, Hans-Peter Hutter
- BARCELONA PUBLIC HEALTH AGENCY, Spain – Manuel Nebot, Anna Perez, Natalia Valero
- CENTRE FOR RESEARCH IN ENVIRONMENTAL EPIDEMIOLOGY, CREAL, Barcelona, Spain, SWISS TROPICAL AND PUBLIC HEALTH INSTITUTE and UNIVERSITY OF BASEL, Basel, Switzerland – Nino Künzli, Laura Perez-Grau, Xavier Basagaña, David Agis Cherta
- DUBLIN INSTITUTE OF TECHNOLOGY, Ireland – Patrick Goodman, Susann Henschel
- ST. GEORGE’S, UNIVERSITY OF LONDON, United Kingdom – Richard Atkinson
- DEPARTMENT OF HYGIENE, EPIDEMIOLOGY AND MEDICAL STATISTICS, MEDICAL SCHOOL, UNIVERSITY OF ATHENS, Greece – Klea Katsouyanni, Antonis Anailitis, Konstantina Dimakopoulou, Alexandros Gryparis, Eva Kougea, Xanthi Pedeli
- CENTRE OF ECONOMICS AND ETHICS FOR THE ENVIRONMENT AND DEVELOPMENT, C3ED, UNIVERSITY OF VERSAILLES SAINT-QUENTIN-EN-YVELINES, UVSQ, France – Yorghos Remvikos, Delphine Delalande, Jeroen Van der Sluijs, Martin O’Connor
- VALENCIAN SCHOOL FOR HEALTH STUDIES, EVES, AND CENTRE FOR RESEARCH ON PUBLIC HEALTH, CSISP, Valencia, Spain – Ferran Ballester, Carmen Iñiguez, Marisa Estarlich
- BRUSSELS INSTITUTE FOR THE MANAGEMENT OF THE ENVIRONMENT, Belgium – Catherine Boulard
- BASQUE FOUNDATION FOR HEALTH INNOVATION AND RESEARCH, Vitoria-Gasteiz, Spain – Teresa Martínez-Rueda, Koldo Cambra, Eva Alonso, Sausan Malla, Francisco Cirarda
- ANDALUSIAN SCHOOL OF PUBLIC HEALTH, EASP, Granada, Spain – Antonio Daponte, Piedad Martín-Olmedo, Alejandro Lopez-Ruiz, Marina Lacasaña, Pablo Sánchez-Villegas
- NATIONAL INSTITUTE OF PUBLIC HEALTH, Bucharest, Romania – Emilia Maria Niciu, Bogdan Constantin Stolica, Ioana Pertache
- INSTITUTE OF PUBLIC HEALTH OF THE REPUBLIC OF SLOVENIA, Ljubljana, Slovenia – Peter Oto repec, Katarina Bitenc, Ana Hojs
- NATIONAL INSTITUTE OF ENVIRONMENTAL HEALTH, Budapest, Hungary – Anna Páldy, János Bobvos, Gizella Nador
- ROME E HEALTH AUTHORITY, Italy – Francesco Forastiere, Giulia Cesaroni, Chiara Badaloni

The Aphekom Scientific Committee

- UNIVERSITY OF BATH, United Kingdom – Alistair Hunt
- INSTITUTE OF OCCUPATIONAL MEDICINE, Edinburgh, United Kingdom – Brian Miller, Fintan Hurley
- WHO EUROPEAN CENTRE FOR ENVIRONMENT & HEALTH, Bonn, Germany – Michal Krzyzanowski
- WHO EUROPEAN CENTRE FOR ENVIRONMENT & HEALTH, Rome, Italy – Martin Krayer Von Krauss
- EUROPEAN COMMISSION DG JOINT RESEARCH CENTRE, Ispra, Italy – Peter Párt
- SPANISH NATIONAL RESEARCH COUNCIL, CSIC, Barcelona, Spain – Xavier Querol
- MAILMAN SCHOOL OF PUBLIC HEALTH, COLUMBIA UNIVERSITY, New York, United States of America – Patrick Kinney

Aphekom - Improving Knowledge and Communication for Decision Making on Air Pollution and Health in Europe
Other Aphekom contributors

▪ BRUNEL UNIVERSITY, London, United Kingdom – Ariana Zeka
▪ NATIONAL CENTER FOR SCIENTIFIC RESEARCH, GREQAM AND IDEP, Marseille, France – Olivier Chanel
▪ REGIONAL HEALTH OBSERVATORY OF THE PARIS ILE-DE-FRANCE REGION, ORS, Paris, France – Sabine Host, Edouard Chatignoux
▪ SAKLAD CONSULTANTS FOR COMMUNICATIONS STRATEGY, Paris & New York – Michael Saklad
▪ STOCKHOLM ENVIRONMENT ADMINISTRATION – Christer Johansson and Boel Lövenheim
▪ WWAM WRITERS LTD., Birmingham, United Kingdom – Geoff Davies

Coordination

▪ FRENCH INSTITUTE FOR PUBLIC HEALTH SURVEILLANCE, InVS, France - Sylvia Medina
▪ UMEA UNIVERSITY, SWEDEN - Bertil Forsberg

Funding and support

The Aphekom project has been co-funded by the European Commission’s Programme on Community Action in the Field of Public Health (2003-2008) under Grant Agreement No. 2007105, and by the many national and local institutions that have dedicated resources to the fulfilment of this project.

To learn more

www.aphekom.org